The SmtB/ArsR family of metalloregulatory transcriptional repressors: Structural insights into prokaryotic metal resistance.

نویسندگان

  • Laura S Busenlehner
  • Mario A Pennella
  • David P Giedroc
چکیده

The SmtB/ArsR family of prokaryotic metalloregulatory transcriptional repressors represses the expression of operons linked to stress-inducing concentrations of di- and multivalent heavy metal ions. Derepression results from direct binding of metal ions by these homodimeric "metal sensor" proteins. An evolutionary analysis, coupled with comparative structural and spectroscopic studies of six SmtB/ArsR family members, suggests a unifying "theme and variations" model, in which individual members have evolved distinct metal selectivity profiles by alteration of one or both of two structurally distinct metal coordination sites. These two metal sites are designated alpha3N (or alpha3) and alpha5 (or alpha5C), named for the location of the metal binding ligands within the known or predicted secondary structure of individual family members. The alpha3N/alpha3 sensors, represented by Staphylococcus aureus pI258 CadC, Listeria monocytogenes CadC and Escherichia coli ArsR, form cysteine thiolate-rich coordination complexes (S(3) or S(4)) with thiophilic heavy metal pollutants including Cd(II), Pb(II), Bi(III) and As(III) via inter-subunit coordination by ligands derived from the alpha3 helix and the N-terminal "arm" (CadCs) or from the alpha3 helix only (ArsRs). The alpha5/alpha5C sensors Synechococcus SmtB, Synechocystis ZiaR, S. aureus CzrA, and Mycobacterium tuberculosis NmtR form metal complexes with biologically required metal ions Zn(II), Co(II) and Ni(II) characterized by four or more coordination bonds to a mixture of histidine and carboxylate ligands derived from the C-terminal alpha5 helices on opposite subunits. Direct binding of metal ions to either the alpha3N or alpha5 sites leads to strong, negative allosteric regulation of repressor operator/promoter binding affinity, consistent with a simple model for derepression. We hypothesize that distinct allosteric pathways for metal sensing have co-evolved with metal specificities of distinct alpha3N and alpha5 coordination complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of metal(loid) binding sites in transcriptional regulators.

Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducin...

متن کامل

A Cu(I)-sensing ArsR family metal sensor protein with a relaxed metal selectivity profile.

ArsR (or ArsR/SmtB) family metalloregulatory homodimeric repressors collectively respond to a wide range of metal ion inducers in regulating homeostasis and resistance of essential and nonessential metal ions in bacteria. BxmR from the cyanobacterium Osciliatoria brevis is the first characterized ArsR protein that senses both Cu (I)/Ag (I) and divalent metals Zn (II)/Cd (II) in cells by regulat...

متن کامل

Fur-type transcriptional repressors and metal homeostasis in the cyanobacterium Synechococcus sp. PCC 7002

Metal homeostasis is a crucial cellular function for nearly all organisms. Some heavy metals (e.g., Fe, Zn, Co, Mo) are essential because they serve as cofactors for enzymes or metalloproteins, and chlorophototrophs such as cyanobacteria have an especially high demand for iron. At excessive levels, however, metals become toxic to cyanobacteria. Therefore, a tight control mechanism is essential ...

متن کامل

Role of bound Zn(II) in the CadC Cd(II)/Pb(II)/Zn(II)-responsive repressor.

The Staphylococcus aureus plasmid pI258 cadCA operon encodes a P-type ATPase, CadA, that confers resistance to Cd(II)/Pb(II)/Zn(II). Expression is regulated by CadC, a homodimeric repressor that dissociates from the cad operator/promoter upon binding of Cd(II), Pb(II), or Zn(II). CadC is a member of the ArsR/SmtB family of metalloregulatory proteins. The crystal structure of CadC shows two type...

متن کامل

Zn2+-sensing by the cyanobacterial metallothionein repressor SmtB: different motifs mediate metal-induced protein-DNA dissociation.

SmtB is a member of a family of repressors which dissociate from DNA in the presence of metals; Zn2+ being the most potent inducer of metallothionein gene (smtA) transcription in vivo. In Synechococcus PCC 7942 cells devoid of chromosomal smtB, four plasmid-encoded mutants of SmtB (C61S, T11S/C14S, C121S and H105R/H106R) repressed lacZ expression driven by the smtA operator-promoter. Gel retard...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology reviews

دوره 27 2-3  شماره 

صفحات  -

تاریخ انتشار 2003